RIEMANNIAN GEOMETRY
 EXCERCISE 10

1. Let \mathbb{S}^{2} be the unit sphere in \mathbb{R}^{3} with the metric

$$
g=d \theta^{2}+\cos ^{2} \theta d \varphi^{2} .
$$

Note that

$$
X_{1}=\frac{\partial}{\partial \theta}, X_{2}=\frac{1}{\cos \theta} \frac{\partial}{\partial \varphi}
$$

satisfy $g\left(X_{i}, X_{j}\right)=\delta_{i j}$. Show that $R\left(X_{1}, X_{2}\right) X_{1}=X_{2}$, and, hence, the sectional curvature $K\left(X_{1}, X_{2}\right)=1$.
2. Let \mathbb{B}^{2} be the unit disc in \mathbb{R}^{2} with the metric

$$
g=\frac{4}{\left(1-r^{2}\right)^{2}}\left(d r^{2}+r^{2} d \theta^{2}\right)
$$

Note that

$$
X_{1}=\frac{1-r^{2}}{2} \frac{\partial}{\partial r}, \quad X_{2}=\frac{1-r^{2}}{2 r} \frac{\partial}{\partial \theta}
$$

satisfy $g\left(X_{i}, X_{j}\right)=\delta_{i j}$. Show that $R\left(X_{1}, X_{2}\right) X_{1}=-X_{2}$, and, hence, the sectional curvature $K\left(X_{1}, X_{2}\right)=-1$.

